5_}3-¢ o

¥§/05

//¢
A Run-Time Control Architecture for the JPL Telerobot

J. Balaram, A. Lokshin, K. Kreutz, and J. Beahan L
_ Jet Propulsion Laboratory 5 7
California Institute of Technology J T

Pasadena, CA 91109
2. Abstract T

Tirtw-peper—describws an architecture for implementing the process-level decision meking for
a hiersrchically structured telerobot currently being implemented at the Jet Propulsion !
Laboratory (JPL):;gz::irnint. on the architecture design, architecture partitioning concepts, |

i

and a detailed d ription of tho existing d proposed implementations are provided. —

2. Introduction | CL)&, A pott

The architecture of a telerobot is required to support autonomous and teleoperated
activities in a manner designed to obtain the maximum synergy of function betveen robotics
and teleopesration. The JPL telercbot implements such a system for applications involving
various servicing snd repair operastions in space.

The architecture proposed for the JPL telerobot decomposes the functionality of systems
operations into three hierarchical levels. For the autonomous cosponent of the architecture,
these levels consist of the Task Planning Level at the top of the hierarchy, folloved by the
Process-Level at the intermediate level, and the Actuation snd Sensor Level at the bottoms of
the hierarchy. Each ocf these levels is designed to operate robustly by using local feedback
to detect and recover fros local errors.

The Task Planning level im concerned vith the overall context of the task, including globel
planning, overall execution monitoring snd task replsnning. The basis for the decision making
is the Task Sequence Logic with relatively little incorporation of Task Domain Physics. As a
consequence, activity timing at this level is driven by task scheduling requirements, and the
decision making methods used are predomsinantly symbolic and not nuseric. In the JPL telerobot
the functions at this level sre mechsnized by an Artificial Intelligence Planner subsystes
(AIP) with the logical planning of a Module svap-cut sequence being s representative example
of internal subsystes activity.

The Procews Level is concerned with the planning, executicn and mcnitoring of subtasks such
a3 grasping objects, object assembly etc. Activities at this level require only a local
subtask context within vhich varicus sensor and actuation subsystems are commanded and
coordinated to accomplish a given subtask. Decision making at this level has to be cognizant
of the physics and geometry of the task domain and the occurrence of various run-time
physical events in the telerobot and its environment. Decision making is characterized by s
hybrid of symbolic and numeric processing vith activity timing determined by the event line
of physical sensed events. MNechanization st this level ia provided by a Run-Time Control
subsystew (RTC) which performs the variocus trajectory determinations, reflex specifications
etc. for subtasks such as grasp centering and activation, parts sating etc.

The Actuation and Sensor Level serves to provide the bessic sanipulation and sensor
capabilities of the robot. The activity at this level is intimately tied to the physics of
the domain but no task context is required. Activity occurs in continuous tise (practically
realized by high rate servo sampling) and is predominantly nuseric in nature. Functions at
this level are wmechanized by the Manipulation and Control Nechanization subsystes (MCM) and
the Sensing and Perception subsystem (S&P) vith complisnt motion execution or object tracking
conatituting representative examples of subsystea activity.

.- Similar levels may be identified vith the Human Operator, with High Level cognitive and
planning functions at the top of the hierarchy, motor skill coordinstion at the intersediste
level and muscular and sensory systems at the lovest level.

Coordination between the autonosous levels of the hierarchy afid the Husan Operator is
provided by three wmsethods. At the lovest level coordinaticn is enabled by providing the
Operator vith the ability to directly interface vith the robot arm and sensors via force
reflecting joysticks and stereo cawmera systeas. At the top of the hierarchy the coordination
is provided via interactive task planning activity betwveen the Task Planner and the Operator.
At the intermediate level the coordination is achieved via a mechasnism knowvn as Traded/Shsred
control described further belovw.

Traded control refers to the situation vhere the Operator relinquishes control over process
level cperations for certain segsents of the task sequence execution vhile retaining it for
others. The trensition between the operstor controlled segments and sutonomsous progras
controlled segments 1is achieved via s ‘hand-off’ protocol that ensures that inforsstion sbout
the vorld state is correctly cosmunicated betveen the operator and the msachine.

211

Shared control refers to the situstion vhere the Operator and the autonosous programs
Jointly participate in decision wmaking' at the process 1level. The contribution of the
sutonosous programs could be passive in nature as in the form of monitoring operator actioas,
e®.g., ensuring that jJjoystick actions will not lead to possible collision with the
environsent. The participation may also be much sore active vith the autonomocus prograss
sctually contributing to the - manipulation of objects in the environment, e.g., letting the
operator control the wvrist of the robot ars vhile the autonomous programs control its global
positioning.

The overall structure of such s system architecture is depicted in Figure 1.
3. Run-Time Control Architecture Requirements and Constraints

Ve nowv focus on the architecture for the Run-Timse controller. The functions of this
architecture are to:

1) NMechanize Proceas Level Operations
2) Permit Man-Hachine Coordination

The specific design of this architecture 1s influenced by the context wvithin vhich the
telercbot aperates, the details of vhich sre described below:

1) Nan-in-loop

This feature has the most significant impact on the design of an RTC architecture. The
existence of the capability of teleoperation implies that the autonosous capabilities of the
autonomsous RTC architecture need not be complete. It is sufficient to have an architecture
that is capable of performing autonomously for a reasconably high percentage of the times the
task is required. Since most computational slgorithms to plan and wmechanize simple physical
subtasks such as grasps etc. are exponentially hard to performs, this feature of the
architecture enables algorithms to be selected based on their likelihood of succesaful
perforsance.

The architecture is also required to functionally interface to both the Operator and the
AIP planner. This isplies that an Interpreter style command language is required to enable
the human to effectively comsunicate with the systes, The Operator must also be able to
interact vith the system in a manner that does not involve a knovliedge of the detailed
implementation and computational aspects of the system. This requirement is usually taken to
mean the implementation of a Task Oriented Language vhere actions are implicitly specified in
terms of the required task. This concept is implesented in the RTC via a Task Cossand
Language augmented by a constraint specification schewme. The constraint specification
language not only allovse the operator (or the AIP) to designate the required physical task,
but also allovs the specification of a set of constraints that are to be maintained by the
autonoscus system during the execution of such a task. The autonomcus system then determines
the appropriaste actions to execute the task and also satisfy the constraints. A sample entry
of the RTC command dictionary is shown in Figure 2. The operator is also required to
interact vith the system in a shared mode of operation as described earlier. The constraints
specification coamand language allovs a natursl and easy extension to permit the
specification of shared control activity.

2) Specislized Environment

The telerobot is required to operate in & space environmsent performing tasks such as
satellite repair, structure assembly etc. The specialized nature of the tasks iwmplies that
standard factory sutomation paradigms are inspplicable. Further, unlike a highly changing
manufacturing environment, the space application environment does have a substantial body of
off-line knovledge available in the form of actusl astronaut experience, earth simulators
etc. The existence of this knovledge indicates that script based techniques are feasible for
decision making, because they permit the transfer of the available knovledge to the systea
with the least effort. Of ccurse, as the telerobot takes over more autonomous functions, the
scripts could be replaced vith wmodules capsble of reasoning and generating their owa
activity.

The other constraint of the specislized environsent is the pcr.ﬁictivc shaped by the
fact that the Run-Time Controller vwill eventually form part of an Embedded systes implemented
in space qualifiable hardvare/softveare. Also, msince the controller is part of an end-to-end
telercbot system, requirements of overall gystem design affect the design of the local
subsystes architecture. Yhile these constraints are not rigid since the farst
implesentations of the JPL telerobot are necessarily ground based research prototypes, the
requirements for an evolutionary growth in the systes require that these factors be
considered vhile designing snd building the baseline architecture.

3) Parallel Activity Tracks

A requirement of the telerobot architecture is the mansgesent of parallel task executios

212

and the simultanecus use of many physical resources available to the robot. Physical
resources consist of various manipulation resources such as robot arms, end effectors, mobile
pPlatforms etc., or various sensor resources. Each of these resource could be active
simultaneously as in the example of dual arm independent or coordinated actions. The
architecture must be embedded vwith appropriate resource logic to ensure that resource
conflicts do not occur vhen simultanecus activity tracks sre in progress. Further, the error
detection and recovery for each of these independently controlled resocurces wmust be
coordinated.

4) Computational Bottlenecks

Computational rescources wmust also be managed. NMost robotics algorithms are
computationally very intensive, far outstripping the capabilities of uniprocessor machines.
Concurrent processing in a8 distributed multiprocessor environment is necessitated, and the
system should therefore be capable of performing the dynamic computation task allocation
necessary to optimally use the available computational resources svailable to the system.

In the RTC, the computational paradigm that has been adopted is the wessage passing
multiprocessing system.

5) Robust Operastions

Robust operations at the any level of the hierarchy require the isplesentation of
feedback, vhere the actual progress of a subtask execution in the vorld is wonitored to guide
further actions. At the sensor and servo level, this feedback is implemented via various
control system scheses designed to operste vith a continuous physical vorld. The RTC, on the
other hand, implements a feedback scheme that operates in event space. A sore detasiled
description of an event space formsulation of the RTC decision wmaking is given in the next
section.

4. Event Control

The notion of event space and event control is intimately connected vith the time
horizon of the subsystem of interest. It can be argued that reaction time for a subsystem at
any level of the hierarchy should be sufficient to react to a possible vorld change that is
relevant to the goal commanded to that level. Therefore for any subsystem, its time horizon
should be comparable vith the time constant of the control processes at that level. While the
precise determination of appropriate time horizons must necessarily be ad-hoc, it
nevertheless allovs the definition of a hierarchical control scheme, vhere a higher level
relies on the lover subsystem for the execution of coswands associated vith ssall tise
constants.

A hierarchy in the chain of comsmand is naturally coupled vith a hierarchy in the
processing of sensory information as vell (1]. This leads to an important sisplification in
the oversll task execution monitoring activity in the telercbot. That is, the subsystewm at
the commanding level is relieved from the mundane supervision of ccamand execution at the
lover levels, and is instead free to focus on monitoring and anticipating @ ssaller (and
finit2) nusber of crucial events.

Taken together, a "trusted soldier principle® (2] may be formulated. According to this
principle the overall process-level decision spsce can be factored into tvo distinct
components. One cowponent is acted upon by the RTC, wvhile the other is the socle
responsibility of the sensor and servo subsystems.

On sny level of hiersrchy, Event Control requires the mapping from the space of sensor
event sequences:

(sj“), iel..M, Kel..S

to the space cf actuation event sequences available for this level:

(A, 1.1 N Rels
vhere ‘i’ is the running index for the sequences and S, represents the number of lover level
actuation/sensor subsystess.

While thim formalisms can be used to describe a traditional servo system vith digital
elements in it, its main goal is to creste a finite paraseterization of actuation and sensor
events therefore making error recovery through search possible.

The ®trusted soldier® principle leads to a unified command forsat. Comsands to a lover

level mpecify goals, constraints on the allovable vays to resch this goal, specifications on
vhen activity should be stopped, and report forsmats ass vell.

213.

In our case the cosmunication betveen the levels of the event control space (RTC) and the
continuum space (MCH and SLP) is performed by s Primitive vhich is modelled es followvs:

Primitive T = (P N, F.R)

wvhere:
P - desired trajectory (position x force space)
M - desired class of control law
F - desired reflex predicste (stop function)
R - desired event reporting function

The cowmponents P and N specify the physical wmotion to be executed by the robot. The
component F determines the terminstion of the sapecified physical wmotion vis & sensor
predicate vhich vhen true triggers the appropriste reflex action (typically a stop). The
component R determines the sensor predicates that generate the event reports to the RTC.

The specification of P and N detersines the desired mep from the actuation event space to
the continuum sensor/actuvation space. The component R specifies the wap from the sensor
space to the sensor event space. The cosponent F apecifies the precomputed reflex actioas
that must be taken by the HMCH and represent the algebraic (memoryless) and local components
of the decision map that are to be executed vithin the fast decision time constants of the
NCH subsystem. We wvant to emphamize that the stop function F is to be defined before the
start of the actual comsmand execution, therefore allowving preplanning for all possible
outcomes of T.

Event Control in the RTC

The interface betveen the RTC and the lover level subsystes adopts the “trusted soldier®
principle of operation. That ies, the lover level subsystes has the full responsibility of
perforaing the desired command T. If T is unsuccessful then the role of the RTC is solely
that of coordinating and interpreting the various reports R (from all of the subsystems) to
determine the next command T to be sent to one of the lover level subsystess.

Given this mode of operation, consider the actions to be taken by the RTC on reception
of a command from the AIP or the operator. The command may be eventually translated according
to one of the four folloving cases:

1. COMMAND --> (P,M,F,R)

2. COMMAND --> (P;,M;,F),R))

--> (Pn.My,Fp,.Rp)
3. COMMAND --> [(P1.M),F1,R}) (P2,M2,F2.R2)....(Pn.My,Fn.Ry)l
4. COMMAND -->

((P11.M11,F11,R11) (P12.M12.F12.R12)....(P1m.Mim.F1m.R1m)}

.

{((Pn1.Mn1.Fn1.,Rn1) (Pn2.Mn2.Fn2.Rn2)-...{(Pnm.Mnm:Fnm.Rnm)]

Case2 1 corresponds to a single possible primitive T (albeit paraseterized) that can be sent
to the lowver level subsystes. An example can be 8 comsand to move an arm to a given joint
position using given joint interpolation.

Case 2 corresponds to the case vhere one of many primitives T wmay be sent to the lover
level subsystem. A comsand that specifies end position, but not the specific trajectory to be
selected by the RTC, can be used as an example here.

Case 3 corresponds to the case vhere a sequence of primitives T is necessary for process-
level command execution, and case 4 desls with the situation vhere more than one sequence 1is
available.

Since only one command can be send to a lover level at a tise, the ambiguity that exists
in the cases 2 and 4 s=must be removed. There are several possible vays to do it. A "hard
rule® approach assuses an existence of an implicit agreewment betwveen the commanding subsystee
and the RTC on hov a single fourplet shculd be chosen. For example it may be assumed that a
straight line interpolstion should be slvays used. In this case there are no resl
differences between camses 1 and 2. On the other hsand 8 "soft rule®" would allov the RTC to
rank all candidates and start execution from the “best® one. If it failed, and the sction
vere reversible, then another candidate could be tried. The RTC implesents s mixed spproach.

214

It ranks possibilities internally based on an RTC internal criteria; but after a choice is
de and tion started, the rule becowmes "herd,® and an error in executicn vould require
the RTC to report it back to the commanding level without exploiting the rest of the optiona.

Commands to the RTC vhich result in Cases 1 end 2 are called Actions. Commands
resulting in Cases 3 and 4 are called Skills. Skills require a sequence of event control
decision making prior to the issuance of each lover level subsystem primitive T. In Case 3
the sequence of primitives is constrained by the one possible mapping indicsted earlier, but
the nuserical psraseterization of the individual T is detersined at run-timse by the RTC. On
the other hand, Case 4 asllove the posaibility that a different sequence of primitives
together vith their individusl parameterization mey be selected during the wmiddle of the
execution of a specific sequence. Since the creation snd execution of this sequence is
dynamically determined by the RTC, the ability to change the persmeterization of a primitive
T, or the actual change of s sequence, gives the RTC the ability to performs "trisming® (i.e.,
error recovery of subtask comsand execution). Note that by virtue of this definition of
trimming, Actions t be tri d.

Using an anslogy fraom control theory. the wmodules that implesent the ‘forvard loop’
operations of Action selection or a nominal Skill sequence determination sre incorporated
into a Process Level Planner, and Zhe ‘feedback loop’ that snalyzes events and determines the
need for trimming is incorporsted 1in Bonitor, Predictor, Evsluastor and Trissmer wodules.
The feedback paradigm corresponding to this event control systea is shown in Figure 3.

It should be noted that tvo key assumptions govern the functionaslity and design of these
wmodules. It is assumed that a nominal task sequence is knowvn froa off line snalysis, and
that in a case of ultimate failure, control can alvays be surrendered to the Operator.

For the MCH a particular imsplementation of command cowponents P,M and R is given by:

P - a set of vis points in joint/task space, or spline functions.

M - positicon mode or compliant mode control.

R - standard report information returned to the RTC after stop (or reflex actions):
joint positions, force/torque sensors readings, and the reason for end of execution.

The choice of the stop functions set F is more comsplicated. It is clesr that F w=sust be
complete in the sense that some condition wust be eventually triggered. The triggering
conditions msust also be unambiguous, namely only one stop function should be triggered st a
time. Such a choice of the stop functions makes the number of possible ocutcomes for each NCH
command finite.

The process level planning is based on scripts. This sllovs the embedding of careful off-
line analysis of the possible outcomes. In the future an expert system can be implemented to
make & choice of an appropriate trimming action. Another advantage of scripts lies in their
ability to incorporate ad-hoc domasin specific knovliedge for planning of @a nominal, feed-
forvard part of a skill. For example an approach position for a grasp can slvays be
determined as a set distance avay <from the grasping point. Another specific feature of the
current implementation is the existence of a command-object cross table which provides for
every action, a list of parsmeters needed for nosinal planning of this Action for each known
object. It can be filled off-line or, if appropriate modules are asvailable, on-line upon
demand. The wmodular nat ire of this architecture allows system modification and extension in
an orderly fashion.

Skill implewmentation includes tvo different phases: planning and execution. First an
appropriste script employs a generate, test and modify psradigm to make a nowminsl sequence of
actions. At the ssme time the script provides a list of possible trimming actions that can be
employed to recover from the errors on the intermediate steps. Then the execution is
performed according to the folloving loop:

WHILE Action_Stasck Not_Empty
loop:
Bind Action Parameters:
Set_up Evalustion_context;
Send Action to the MCHN;
Wait for Report;
Evsluate Report;
1f SUCCESS then
null;
else
Determine trimming
if ANY AVAILABLE then
put trim_sction on Action_Stack;

else
Report_up(Fail);
endif;
endif;
endloop;

215

An sctual example 0f a script to perform object grssping is shovn In Figure 4. Numbers
after each action refer to the trisming stack associsted vith the grasp script.

S. Isplemsentstion

The previous sections have described sose of the techniques used to perfors certain
desirable simplifications, such as wmapping » continuous prodbles space into a discrete ooe.
Nov the structure and implementation of the RTC architecture vill be exasined.

As background, the softvare implementation of the RTC is on an Al VAXstation II, uader
MicroVES. The softwvare is vwritten primarily in Ada, wvith sose portions in C and Fortran,
which are accessed vith the Interface pragsa supplied b,/ Ads. Ads wvas our choice of language
for the RTC deliverable softvare, but vwe perform rapid sisulation and prototyping of
algorithes in Prolog. Lisp, Smalltalk snd a locally-vritten development environsent called

Thread. Our choice of Ada for the deliverables vas ssde for severasl ressons, the sost
ocbvious being that the RTC will eventuaslly have to comply vwith the Space Station asll-Ada
softvere requiresent anyvay. In addition, the ability to express concurrent prograas

directly in the language vithout resorting to operating systeas interfasces vas 8lso a
desirable festure. Our strongest resson, hovever, vas the extresely high modularity of Ada,
alloving several people to wvork on the same softvare vithout dissstrous consequences. This,
coupled with the enorsously high level of compile-time error checking in Ada, turns out to
have been a true expectation. Our softvare production has been only loosely coordinated
among four different people, but it has experienced no incompatibility problems and has a
history of phenomenally lov levels 0f runtime errors. Ve believe that Ada is @ good choice
for our deliverables since they are of precisely the category of softvare Ads vas designed to
fit, nemely distributed embedded real-time systems. Ve vould sake the coasent, hovever, that
Ads is not a good choice of language to prototype in.

The telercbot vill be used over the course of several years for sany purposes, including as
a testbed in vhich to investigate Dboth lov (e.g, feedback control lavs) and sedium (e.g..
grasp strategies) level robotics algorithms, as vell as for the targeted dewmonstration
scenarios. For this reason, the architecture of the RTC wmust have the charscter wmore of a
development environment rasther thsan of a finished product. The ability to reconfigure the
telerobot to perform servicing tasks on satellites other than the one targeted for testing is
one of the obvious requirements. It is our opinion., hovever, that the many comsplex
interactions which can take place during various types of robot operations, even 1in such a
structured situstion as the servicing of a modular satellite, vould make it likely that even
state-of-the-art robotics algorithas would be far too rigid to mseet all needs. To insure
sufficient flexibility, one must not only provide as such as possible in the wvay of current
robotics algorithms, but also provide the ability to comspletely change hov, vhen and vhich
algorithms are applied.

The ability to do such general restructuring vithin a practical robotics isplesentation has
very large softvare consequences since the addition of a particular algoriths to the mix used
in the robot might require brand nev data representations to sccosmmodate nev informestion
relevant to previously unmodeled properties of objects, and the asddition of the new algorithas
could very vell require comspletely redesigning the strategies used for applying various
currently-used algorithms. An example might be the addition of a nev grasp planner module,
vhich might require that more data concerning each object to be grssped be installed in the
data base and that the previously used strategy for stable grasp position determination be
disabled or modified.

In order to support such a high degree of flexibility, the structure of the RTC
architecture is that of a framework in which robotics slgorithms can be installed, rather
than 8 particular msix of algorithms. The RTC consists of several modules vith a very rough
degree of functionality assigned to each type of module, but the specific 1inputs, outputs and
details of operation vhich each moduls performs are controlled by reconfigurable data sets
supplied to each module. The rough partitioning msentioned above i1s relatively simple and is
an ad-hoc solution to the question of how to slice up the probles of processing the commands
received by the RTC. One important characteristic, namely the ability for the RTC to accept
commands in parallel, had s major roie in selecting the problems sepsration.

The RTC 18 required to be able to perform more than one coasand simultaneously, assusing
that they do not conflict vith esch other. The task of mansging sccess to various sharable.
non-shareab’e and queue-based resources is <fairly straightforvard in the context of the
telercbot, due to the fact that the autonosous systes may be interrupted by the operstor at
any time. This wakes it virtually impossible to perform any time-scheduling of rescurces, so
the simple restriction is wade that all cossands aust be independent of esach other with
respect to timse shifts. This removes the neceseity of perforsing the many cosplex sorts of
resource allocation and activity coordination vwhich vould othervise be required betwveen
commands. This restriction is not as crippling as it seems, hovever, since there is no rule
vhich states that a single comsand can use only one resource. In fact, 1f a cosplex
cooperative task involving two armss and a vision system 1s desired, it would simply need to
be formulsted as 8 single command 80 that the coordination operations necessary could take

216

place wvithin the framevork of cone d, without requiring propsgation to other activities.
This independence also jrestly simplifies the task of meanaging respgoase to urexpected error
conditions, since all that ie necessary is s sismple terminstion of the cossend, or of all
currently executing cosmands if the error is a global one. Agesin, this sisple Dehavior is
not restrictive, since any sort of cosplex error response cen be produced, 1f desired, simply
by including it ss an expected possible off-nosinal situation in & cossand. Obwviously, there
is a grest desl of poesidble interaction between robot sctions in the real vorld, asd
formulating tvo cossands in such & nanner as to be truly time-shift invariant aight be very
difficult in sny given situstion, but this is not really sn issue. If the tvo operstions are
unconnected, they can sisply be done in series, formulated as tvo sepsrste comsands. If they
sust be done cooperstively, they can Dbe forsulated as one cosssnd. The perforsence of
dependent Operations in parallel could sid efficiency., but is not a key requiresent.

¥ith the above preface., the ad-hoc decowpoei:is. of the RTC’s processing of cosmands
follovs.

Command Parsing
e An incoming coasand fros the higher-level system is first converted into some
internsl working data structure used by the other wmodules; this allowvs decoupling
internal operations from external interfaces.

Script Elaborstion

e The cossand is then examined, and a specific sequence of activities is decided upon
to execute it, together with specific posaibilities for responses to off-nominal
events during execution. An exampie® oOf this vould be a grasp comsend, for wvhich a
sequence of three straight-line wmotions folloved by a closure of the gripper wvas
decided upon, vith the off-nosinal behsvior of backing up to the starting point and
simply repeating the entire motion if the grasp does not succeed on the first try.
This sequence is specific in the number and type of motion primitives to be executed,
but no details are present yet ss to vhich trajectory is to be used or vhat the point
of grasp on the object is to be.

Action Binding
e An elemental motion/sensing primitive in the sequence is then further processed,
in order to detersine the precise numserical psaraseters for its execution. This
primitive is then sent to the sppropriate subsystes, vhich responds vith one or more
reports back to the RTC providing progress/result inforsation about the comsmand’s
execution.

Report Analysis
e The returned reportis) are exsmined, and a detersination is wade vhether to
continue execution, abort or take sowe off-nosinal corrective action, such as the
retry opticn sentioned sbove. If the decision is sade to continue, the previcus step
is then repeated for the next prisitive in the sequence, followved by this one, until
all primitives in the sequence have been executed.

The overall architecture of the RTC is one 1ir. vhich each of the steps outlined above has
been assigned to one type of module, vith each comsand thus boing processed by one of theee
four types of modules at any one time. HNultiple modules execute in parsllel and comasunicate
by message passing in & very simple wvay. Nev instances of each module csn be cCreated as
rezded to process parsllsl commends since esch module is simply a vorker vhich is dispatched
wvith a job to do and then returns vith s result, vith no perssnent memsory of 1its ovn and
(with & single exception) no side-effects. All information relevsnt to the processing and
execution of the cowmand is contained in the inputs and outputs to each scdule, with the
exception of spatisl/gecsetric information about the state of the vorld, vhich is contained
in a global database. This database can be read by any sodule, but only the wmodule assigned
to analyze the reports returned from an executing subsystem has the suthority to vrite to 1it,
thus updating the information in the database vith the data returned by the executing
subsystemn. This is the single side-effect present in the execution of sny sodule, vhich
removes the possibility of vrite contention and other such coordination probless.

The RTC is thus made up of zero or more copies of each of the four cossand-processing
modules., together with several additional modules vhich perfors various essential functions:

e An Interface Server, vhich serves as & cosmunicstion port to the other subsystesns
in the telerobot.

e A Decision Unit, which is the central dispatcher/coordinator for the RTC. This is
simply a finite state machine, vith the four-phase comsand processing behavior built
into it, slong with the terminate cossand-on-error snd resource-sansgesent behsviors.
In the nominal case, 1t sieply feeds the input d into ssive modules,
propagating one module’s cutput to the next msodule’s input, vith wsinor exceptions.
In anocmalous situations, it simply tskes seversl straightforvard steps to insure that
the executing subsystess and internsl modules vorking on that cossand are shut dowvn
and sends a report of the halt back to the higher level systes cossanding the RTC.

217

Becsuee of the simplicity of the Decision Unit (a sisple decision tree), it needs
only e very short period of time to execute any g‘vm ,>sponse to an event, such as
an incosing wsessage. For sost csees, it sisply sends out the incoming dats to the
sppropriste sodule. This sllovs very rapid response to exception conditions, such as
@ comsand from the telerobot’s human operator to stop executing. The Decision Unit
wvill slmost certainly be idle wvithin a fev milliseconds of receiving the sesssge, and
csn then process it, and send out subsystewm hslt prisitives very rapidly, giving only
@ fev tens of milliseconds of delay betveen the operator’s cossending the halt and
the arm actuation subsystem halting ars sotion.

e Cosmand Parser modules, as many as needed, vhich convert the input to an internal
vorking form. It should be explained that one desirable feature of <the telercbot is
to let the operator intervene in execution at sny level of the cossand hiersrchy from
Al (activity planning interface) dowvn to detsiled ars motions (teleoperstion), so the
RTC’s cosmand inputs sre alsc of husen-ussble fors. The cossand input froe the
higher level is thus in the forms of an ascii string vith fairly readable content.
From the RTC viewpoint then, there is no distinction wade betveen the husen operator
and the AI planner.

e Script Elaborator modules, as sany as needed, vhich dscide on the basic script to
follov for executing the command. In cases vhere e paraseter for an esrlier
primitive action msust be detersined by using s precise value for a peraseter to an
action to be executed later, (e.g., & precise grasp point may be needed to backtrack
® trajectory to the current position of the ars) then determination of these
nuserical psrameters is slsc performed at this phase, and the <“e.ailed parameters are
inserted into the primitive before it is sent to the next phase. This permits the
use oOf backtracking as e planning technique 3if desired, along vith any other
technique vwhich requires » noncaussl detersination of specific paraseters for
actions.

s Action Binder modules, as many as needed, vhich determsine the precise nusericsl
values needed for each subsystem primitive to be sent out for execution. The Action
Binder vould be invoked once for each primitive in the script, vhether the primitive
vas & nowinal sction or e response to sose planned-for off-nowinal conditioa. The
stepvise invocation of the Action Binder allovs the use of paraseters detersined st
one point of the execution of the command during run-time to be used at later points
in @ very simple fashion. Also, as described above, 8 parameter for an action
primitive may be already fixed vhen it arrives in an Action Binder, vhich will not
disrupt the normal operation of the wmodule.

® Analysis Unit modules, as many ss needed, vhich examine the reports returned by the
executing subsystess, update the globsl geometric/spstial datsbase accordingly, and
detersine the recommended course of action to be followved, vhich would be to continue
norwmally, abort, or take a specific foreseen corrective sction. This recossendation
is then sent to the Decision Unit, vwhich wmay choose to follov it, if overall
execution is normsl, or msy ignore it and choose to tersinate the cosmend, if for
exawple the AI has sent @ halt instruction to the RTC during the execution of the
command. The key point concerning the AU modules is that they operate entirely on
command-related inforsation, and do not take into account such things ss globsl
anomslies, but operate ss a memoryless single-input single-output systea. The input
is the command context together with the report sent back by the subsystewm, and the
output 1is the recommendation for action. The Decision Unit vorries about
coordinating any overall behavior which cr d b daries.

e A Database Server wmodule, vhich simsply behaves ss s shared-sesory ares for the
other modules. Any given location in it can be vwritten to by only one AU at any
given time, and there are various validity flags to indicate vhether or not other
modules should be alloved to read any given piece of information.

e In addition to these modules, vwvhich form the basic configuration of the RTC as
shovn in Figure 5, there are several others vhich vill not be detailed, but wvhich
exist because of the regquiresent that the RTC’s geosetric database Dbe sccessible to
any subsystem in the telerobot, to act as » central repository. Also, there is the
requirement that the Al planner, in order to perforem its planning, may need tOo use
backtracking msethods. To support this, the RTC contains an identical copy of the
Comsmand Pesrser/Script Elaborator/Action Binder sodules vhich sre used as &
hypothesis-testing facility by the Al planner. The planner can simulate as such as
possible of the execution of @ possible RTC comsand, without actually cowssanding any
subsystes activity, S0 as to determine vhether or not a particular line of planning
will be found to be infeasible at the nuwmeric level by the RTC. This facility asllovs
the fairly ad-hoc division in the planning masde betveen the Al planner snd the RTC to
functicon robustly in the presence of couplings between the symbolic end nuseric
levels of robot sctivities.

218

The prisary aspect of the wmodules vhich perfora cossand processing is that they are
fsplewented not as hardvired entities vwhich operste on data, but as data-drivea
*iaterpreters, * which take as input & progran, as well ss data. This implementation allows
the modules to be easily reconfigured to use s nev algorithms if at all poesible. For exawple,
adding 8 nev algoriths say absclutely require a cowplete restructuring of the existing systes
-becsuse of robotica considerations, but such restructuring would not be necessary simply
because of softvare difficulties. This feature allovs the addition of many types of robotica
-and alsc Al techniques to the RTC if desired since there is no restriction et all on wvhat
datas is passed betveen the modules, and only trivial restrictions on the order in wvhich they
are invoked. It is our hope that later versions of the Script Elsborator will use AI-type
ressoning technigques to produce the basic scripts for use during emecution, rsther than the
cut-and-peste/table loockup technique used novw. This wvould give the ability to literally
replan & sequence in the event of an error, instead of forcing error responses into specific
scripts. Also, a prediction capability, capsble of utilizing expectation inforsation ia
anslyzing the eensor data during execution, would be s desirshle feature to sdd to the
Analysis Unit. The ability to resove the independency restriction on separate cossands and
perfors coordination betveen more than one command would also be useful in increasing systes
efficiency. All of these idess have been explored in a preliminary fashioa, and several
feairly straightforvard implesentation alternatives have been found to eech of thes,
indicating thst the ability to specify module behavior at run time, rather than just its
input data, is an extremsely powverful feature of the RTC.

A feature of the RTC is the fact that the semoryless, dispatched-vorker wmodule formet is
ideal for implementation on a multiprocessor hardvare architecture. Nodules do not perfors
sny significant nonlocal references (the exception is database access, vhich can be reduced
by simply grouping read requests into bunches, rather than lots of individual resad requests)
snd do not require sny cosmunication among themselves during execution. A preliminary study
indicates that conversion of the RTC to operate on s hypercube multiprocessor would be a very
straightforvard task.

Another sspect of the RTC’s internal operation is that it is relatively simple to treat the
husan operator as a subsystem to be commanded by the RTC. This sllovs several simple but
effective wsolutions to the extresely difficult probless of specifying to the sutonosous
system vhat the intentions and outcomes of human teleoperstion activity are. For example, if
the operator intervenes into autonoacus execution and picks up an object, there is no wvay for
the autonomous systes to examine aras trajectories and gripper force data to determine that
the object vas grasped at all, or if it vas grasped vhat the position of it in the gripper
is. This very simple example showvs hov difficult is the task of sharing control of aa
autonosous system vith s human operator. One solution, vhich by necessity isposes & good
deal of overhead and restriction on the human operator, is to specify intervention sctivities
to the ¢telerobot in the seme form as any other cossand, wvith the exception that the

. performing subsystea is the operator. This paradiges would wmean that precise nuserical
parameters vould bhe left out of each step, but the norssl sequence of subsystem prisitives
wvould be used by the RTC, and likevise the ususl sequence of RTC commands would be sent out
by the AI, and the operator would fsce the restriction cf performsing only that portion of the
tesk specified by the primitive. An exploration of this wethod of structured operator
intervention, vhich is one candidate for the JPL telerobot, is given belov.

If an object could not be reliably grasped by the asutonomscus systems, the cperator could
instruct the AI planner to

*grasp Object with Right_srm vis Operator_intervention.®

This wvould result in the command ¢trickling down the hierarchy through the RTC and s
subsystes primitive to the operator sppearing on the control console. In this example, the
first wight be:

*move Right_aras to_neighborhood_of Object”.

The operator vould perform thims, in teleoperation mode, snd indicste that he vwas finished.
The RTC would then send out the next primitive:

*move Right_arm to_grasp_point_of Object®.

The operator would comsply, seating the gripper on the object in a satisfactory
configuration so that vhen the gripper vas closed, it vould grasp the object firsly, without
moving the obiect. The RTC would then be sble, by performsing kinematics and geometric
computations, to knov vhat <the grasp point reference frase for the object was and wvould,
therefore, be able to correctly update the data base as to the position of the object after
it has been grasped. The final primitive would be sent by the RTC, directing the opersator to
close the gripper, and the operator’s response wvould confirms that the grasp toock place as
expected, vithout disturbing the spatial relationship set up.

This scenario demonstrates the additional overhead isposed on the operator by the necessity
of saintaining the autonoscus aystes’s integrity. It is essentisl, hovever, that some fore

219

of strong reetriction be placed on the operator, , not only to coordinate activity with the
autonomous systes, but to prevent operstor disruption of the sutonomous systea duve to humsss
oversight. It is 1likely that there will need to be more effort put into protecting the
sutonomous systes fros the operator than into asking the asutonomous systes operate
effectively on its own.

Another issue we believe to be of foresmost isportance in the telerobot design is that of
detection of ancmaslous conditions in the world. Even in such s highly identified environseat
as satellite servicing, it 1is crucial that sensor feedbeck be employed as oftes as possible
0 as to prevent any cascade of errors forvard through the execution of a servicing task. It
is unlikely that any Al/robotics sutonomous systems vill be able to make allovances for error
propagstion in its activities, wvithin the near future. Such propagstion must be eliminated
if the asutonomousm system is not to become completely confused, vith major portions of its
vorld sodel invalid, vhich is a cowpletely unacceptable situstion owving to the large amount
of time and effort vwhich vould likely be required in order to restore the vorld model to a
correct state (vork wveeks).

The developmsent of such an architecture must necesssrily recognize the limitations of
current science and technology in this nascent ares. Early srchitectures focus oa
integrating the process-level autonomous functions into ‘the system for siwmple, independently
controlled arse. Operator-machine coordination is restricted to simple traded control
schemes. Later architectures support more cowplex physical environmsents (more sras, redundant
arse), as vell as w=sore cosplicated functionality such as coordinated arm motion and true
shared control. Concomitant with <this incressed cosplexity and functionality is the
managewment of complex computational architectures and the integrstion of more sophisticated
error recovery and planning methods intoc the system. At the present time, the RIC of the JPL
Telercbot has been implemented to contsin the following capsbilities:

e Command Parser -- parses ascii strings from a siwple BNF forw into a record datas
structure contsining equivalent information. The BNF language in use has roughly 100
terminal symbols, 50 clauses.

e Script Elaborator -- uses s simple decision tree to splice portions of command
sequences together into a coherent script, together vith off-nominal scripts. Hes
the ability to backtrack fros goal point for purposes of trajectory generation.

e Action Binder -- perforss generation of joint/task space linearly interpolated
trajectories in s piecevise fashion, using kinematic and losd-csrrying constraints of
the manipulator arms, together vwith collision detection, to plan swmall sars motions
for grasping purposes.

e Analysia Unit -- uses a tshle-driven decision tree to evsluate the outcose of an
execution and makes e recossendation. If the recommendstion requires corrective
activities, then the script to perform it is simply looked up in s table, having been
generated by the Script Elaborator.

6. Conclusion

We have described a Run-Time Control architecture for the JPL Telerabot and discussed
associated issues. This vork vas perforsed at the California Institute of Technology, Jet
Propulsion Laboratory der a contract from the Nationsl Aeronautics and Space Adminstration.

7. References

[1] J.S.Albus et al., *Hierarchical Control for Robot in Auvtomated Factory.® Proc. of 13th.
International Symposium on Industrial Robots, Chicago, 1983, pp. 29-43.

{2) A.Lokshin, K.Kreutz "Tovards a Hiersrchical Robot Control Language®, 1EEE CS Vorkshop on
Languages of Automation. August, 1986, Singapore.

220

T TR : D TP o-

P ' ZNTERACTIVE
E FaBK PLANNING

AZX PLA

BHARED /TRADED CONTROL

JOYSTICK CONTROL
A—? vIDED

TELEOFERATION
MECHANIEATION
STERED CARERAS

AUTONONROUS
RANIPULATION
a2 BENSZING
NECHANIEATION

I
MARDWARE COORDINATION
BPOUNDARY - -

Figure 1. Telercbot Functional Architecture

qrasp --) GRASP goal maistatin reflex
gosl --) end-effecter graspable-object grasp-point
end-effecter --» LEFT-£30D-EFF
-=2 RIGHT-EMD-E¥Y

saintain --> wil SCRIPT
==) MAINTALE saf{e-wvork-range
avoid-task-region
avoid-neighbors “graap_tni”
pose-during-sotion —— o0
speed.
“grasp_plan”
ceflex --) nild P -F
-—) GUARDED
~~) reflex-itens “active_ars JAP move_{ree mowe}]”
refl 1 °e
ex-items --> ail - -
—-) reflen-item reflex-items active_arm JUR move_to_contact move _joint
veflex-item ~-) UNLESS condition THER action °oe
“active_ara CP! move_to_contact sowe_task”
Figure 2. Sample RIC Command 12
“active arm GP2 move_to_contact mowe_task”
12
“GP = 0.524(CP1 ¢+ GP2)"
o0
—— PLANNER “active_arm GF sove_tocontact mowe_task”
L N)
“close”
o0
I TRIR STACK
X
1 “active_object visiom®
TRIMMER 2 “active_object grasp®
PREDICTOR
l Figure 4. Grasp Script
'
i EVALUATOR
Figure 3. RIC Functional Paradigm
cOMMAND o ABASE
‘...m -nc‘:;m oar i
CECIHION UMY
* RESOURCE LOGI
. NCY
ACTINATION
Siaven
ITERPRETER
. WAPAATION EVENT ANALYSIS
woDeLS * FuLEDBACK
* TRANCTORY DESIGN MO TORMRG
* WOTIONSANENG * AECOVERY
MAVENCING * WOALD MODEL
& SRRSO CONTROL WoATE
—ODELS
MOTION/Si 200t - Tweg
raanTIVES aeFORTS

Figure S. RTC Architecture

221

